Waxy Phenotype Evolution in the Allotetraploid Cereal Broomcorn Millet: Mutations at the GBSSI Locus in Their Functional and Phylogenetic Context
نویسندگان
چکیده
Waxy mutants, in which endosperm starch contains ~100% amylopectin rather than the wild-type composition of ~70% amylopectin and ~30% amylose, occur in many domesticated cereals. The cultivation of waxy varieties is concentrated in east Asia, where there is a culinary preference for glutinous-textured foods that may have developed from ancient food processing traditions. The waxy phenotype results from mutations in the GBSSI gene, which catalyzes amylose synthesis. Broomcorn or proso millet (Panicum miliaceum L.) is one of the world's oldest cultivated cereals, which spread across Eurasia early in prehistory. Recent phylogeographic analysis has shown strong genetic structuring that likely reflects ancient expansion patterns. Broomcorn millet is highly unusual in being an allotetraploid cereal with fully waxy varieties. Previous work characterized two homeologous GBSSI loci, with multiple alleles at each, but could not determine whether both loci contributed to GBSSI function. We first tested the relative contribution of the two GBSSI loci to amylose synthesis and second tested the association between GBSSI alleles and phylogeographic structure inferred from simple sequence repeats (SSRs). We evaluated the phenotype of all known GBSSI genotypes in broomcorn millet by assaying starch composition and protein function. The results showed that the GBSSI-S locus is the major locus controlling endosperm amylose content, and the GBSSI-L locus has strongly reduced synthesis capacity. We genotyped 178 individuals from landraces from across Eurasia for the 2 GBSSI and 16 SSR loci and analyzed phylogeographic structuring and the geographic and phylogenetic distribution of GBSSI alleles. We found that GBSSI alleles have distinct spatial distributions and strong associations with particular genetic clusters defined by SSRs. The combination of alleles that results in a partially waxy phenotype does not exist in landrace populations. Our data suggest that broomcorn millet is a system in the process of becoming diploidized for the GBSSI locus responsible for grain amylose. Mutant alleles show some exchange between genetic groups, which was favored by selection for the waxy phenotype in particular regions. Partially waxy phenotypes were probably selected against-this unexpected finding shows that better understanding is needed of the human biology of this phenomenon that distinguishes cereal use in eastern and western cultures.
منابع مشابه
Molecular Basis of the Waxy Endosperm Starch Phenotype in Broomcorn Millet (Panicum miliaceum L.)
Waxy varieties of the tetraploid cereal broomcorn millet (Panicum miliaceum L.) have endosperm starch granules lacking detectable amylose. This study investigated the basis of this phenotype using molecular and biochemical methods. Iodine staining of starch granules in 72 plants from 38 landrace accessions found 58 nonwaxy and 14 waxy phenotype plants. All waxy types were in plants from Chinese...
متن کاملReticulate evolution in Panicum (Poaceae): the origin of tetraploid broomcorn millet, P. miliaceum
Panicum miliaceum (broomcorn millet) is a tetraploid cereal, which was among the first domesticated crops, but is now a minor crop despite its high water use efficiency. The ancestors of this species have not been determined; we aimed to identify likely candidates within the genus, where phylogenies are poorly resolved. Nuclear and chloroplast DNA sequences from P. miliaceum and a range of dipl...
متن کاملThe granule-bound starch synthase (GBSSI) gene in the Rosaceae: multiple loci and phylogenetic utility.
We sampled the 5' end of the granule-bound starch synthase gene (GBSSI or waxy) in Rosaceae, sequencing 108 clones from 18 species in 14 genera representing all four subfamilies (Amygdaloideae, Maloideae, Rosoideae, and Spiraeoideae), as well as four clones from Rhamnus catharticus (Rhamnaceae). This is the first phylogenetic study to use the 5' portion of this nuclear gene. Parsimony and maxim...
متن کاملRainfall Seasonality and the Spread of Millet Cultivation in Eurasia
Broomcorn millet (Panicum miliaceum) was known throughout Eurasia in the second millennium BC in regions with warm, moist summers, where its cultivation reduced agricultural risk. Its cultivation during the warm, but dry months at Kyzyltepa and other Iron Age sites in western Central Asia was probably made possible through irrigation practices that were long known and originally developed in th...
متن کاملComparative bioinformatics analysis of a wild diploid Gossypium with two cultivated allotetraploid species
Background: Gossypium thurberi is a wild diploid species that has been used to improve cultivated allotetraploid cotton. G. thurberi belongs to D genome, which is an important wild bio-source for the cotton breeding and genetic research. To a certain degree, chloroplast DNA sequence information are a versatile tool for species identification and phylogenetic implications in plants. Different ch...
متن کامل